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Surface Tension and Viscosity from Damped 
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Damped oscillations of a viscous droplet in vacuum or in an inert gas of 
negligible density are considered. The dependence of the complex decay factor 
on the properties of the liquid is investigated for the first time, and numerical 
results are compared with earlier studies for special cases. A new method 
is developed to determine both surface tension and viscosity from a single 
experiment in which the damping rate and frequency of oscillations are 
measured. The procedure to determine surface tension and viscosity from 
oscillating levitated liquids is outlined, and results are presented for various 
modes of shape oscillations. 
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1. I N T R O D U C T I O N  

Levitation methods, in particular electromagnetic and/or acoustic levitation, 
have often been suggested as a viable option for eontainerless processing of 
materials in reduced gravity environments [1]. In addition to possessing 
many technological advantages, levitation enables closer and better 
controlled examination of interfacial dynamics and thermal processes in 
liquid droplets. Levitation methods have become very attractive in the case 
of high-temperature materials and melts, due to the added complication of 
crucible contamination, which they effectively eliminate. Electromagnetic 
and acoustic levitation are the default choices, owing to their simplicity, 
stability, and high-temperature capabilities. Thus, a whole new class of 
thermophysical-property measurements and studies that utilize levitation 
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has evolved in recent times [2-7], and many properties that have not been 
measurable in the past have been measured. 

In the past, analysis of damped oscillations of levitated liquids has 
been suggested as a means to obtain viscosity and surface tension data for 
liquids. Oscillations of electromagnetically levitated liquids have already 
been used to measure surface tension [-6], and shape oscillations of 
acoustically levitated liquids have been suggested as a means to measure 
both surface tension and viscosity [7]. Despite such references to the 
possibility of measuring viscosity and surface tension from damped oscilla- 
tions, there appears to be no work in the literature which develops such 
methods and presents such a technique. The hiatus is partly because the 
analysis of damped oscillations involves Bessel functions of complex 
arguments, and numerical solution is usually difficult and has not been 
reported in the literature so far. 

In this paper, we develop a method to measure simultaneously the 
viscosity and the surface tension from a knowledge of the frequency of 
oscillations (o)) and the rate of oscillation damping (~) of a liquid droplet. 
First, the dynamics of a freely oscillating viscous droplet are studied, and 
the dependence of the complex decay factor on properties is investigated. 
Then, a procedure is described that takes e) and z as inputs and predicts 
the surface tension 7 and the kinematic viscosity v for any given liquid 
droplet of known density and geometry, oscillating in a known mode. 

2. THEORY OF DAMPED OSCILLATIONS OF A 
LIQUID DROPLET 

The study of the oscillations of liquid droplets is not new and has been 
undertaken, in one form or the other, from the times of Kelvin [8]. An 
understanding of the dynamics of oscillating droplets has many applica- 
tions, notably in chemical engineering [9-11 ], multiphase flows [123, and 
for the development of new techniques for thermophysical property 
measurement [4-7]. A general analysis of small oscillations of a viscous 
fluid immersed in another liquid has been presented by Miller and Scriven 
[-9]. The special case of a viscous droplet oscillating in a vacuum or a 
low-density gas has been considered by Reid 1-13] and summarized by 
Chandrashekar in his treatise [14]. However, in all these works, solutions 
for damping rate have been discussed in detail only in the limiting cases of 
high viscosity or low viscosity. In order to develop a general measurement 
method, it is necessary to consider the finite viscosity case, and obtain solu- 
tions for the damping rate and oscillation frequency. This is attempted in 
this section. 
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Consider a liquid droplet of density p and equilibrium radius R, 
executing small shape oscillations about its spherical shape. For simplicity, 
we assume that there are no external forces acting on the droplet and that 
the interface is free of contamination and surface reactants. For very 
low-amplitude oscillations, in the absence of gravity, the perturbation 
equation governing the flow is 

Ov -- 1 
- - =  V p + v V 2 v  (1) 
c~t p 

where v is the velocity vector, t the time, p the pressure, and v the 
kinematic viscosity of the liquid. The convection terms can be assumed 
negligible because they are second order in the velocity. Applying the 
normal mode analysis to this equation [9, 14], a solution to Eq. (1) can 
be easily obtained as 

rWnm=e-~tWnm(r ) Ynm(O, ~) (2a) 

and 

r~nm = e-e 'Z. . . (?)  Ynm(O, ~) (2b) 

with ? as the radial coordinate. Here fl is the complex decay factor, Ynm a r e  

the spherical harmonics, and w and ~ are the radial components of the 
velocity and vorticity, respectively. The functions of ? are found to be 

Wn(?)=al~n  + a 2 ? - n  l +a3(rc/2q)l/2 (1) L,, + 1/2(q) d- a4(Tz/2q) 1/2 t(2)+ 1/2(q) 

(3a) 

and 

Zn(?) = b~(Tt/2q) 1/2 L~+ 1/2(q) + b2(~z/2q) ~/2 L ~  ~/2(q) (3b) 

where q = ~/(f l /v)?,  n is the mode, and the L's are an appropriate pair of 
half-integral-order Bessel functions. Applying the kinematic boundary 
condition, the tangential stress and the normal force balance conditions 
and simplifying (a detailed discussion of the solution method is given in 
Refs. 9 and 14 and is not repeated here), we obtain the characteristic 
equation for the droplet in question as 

0) *2 2(n 2 -  1) 2 n ( n -  1) 
1 + H (4) 

2 J Z 2 fl~ z - 2 zQ,  + 1/2 
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where z = q at ~ = R, QJ~+ re(z)  is the ratio of spherical Bessel functions of 
successive order, 

Jn+ 3/z(Z) (5a) J 
Q" + 1/2(z) = J ,  + ,/2(z) 

H =  1 - ( n+  1) Qe~+l/a(Z) (5b) 
z/2 - QJ~+ 1/2(z) 

and co* is the natural frequency of oscillations of an inviscid droplet 
oscillating in mode n [15], 

c o , 2 _ n ( n - 1 ) ( n +  2)7 (6) 
pR 3 

In what follows, we drop the subscript n for convenience, using it only 
when there is a possibility of ambiguity. 

Equation (4) is the characteristic equation that is to be solved for 
a complex /3 = r _+ ico. As mentioned earlier, it has been solved only at 
the limits of high viscosity ( z ~ 0 )  and low viscosity z ~  oo [-9, 14]. 
Chandrasekhar [14] also includes a detailed discussion of the aperiodic 
damping factors for a viscous droplet. In both these works, the need for a 
solution in the complex domain is emphasized but not undertaken due to 
the numerical difficulties involved in solving the awkwardly transcendental 
function of a complex variable. Here we give a solution and outline a 
procedure which is used in the measurement of surface tension and 
viscosity, described in Section 3. 

2.1. Solution for Complex Decay Factor 

Using the polar form for the complex variable z 

z = x + iy = r(cos 0 + i sin 0) 

in Eq. (4), simplifying, and separating into real and imaginary parts, we 
obtain 

~4[-r COS 0 - -  2 Q R E ( Z ) ]  = - - r  5 c o s  50  d- 2 Q R E ( Z  ) r 4 c o s  40 

- - 2 Q I M ( Z  ) r 4 s i n  40 + 2(2n 2 - n -  1) r 3 COS 30  

- 4 n ( n  - 1 )(n + 2)(r 2 cos 20QRE -- r 2 sin 20QIM) 

(7a) 
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and 

0~4[-r sin 0 - 2 Q I M ( Z ) ]  = - r  5 sin 50 + 2 Q R E ( Z )  r 4 sin 40 

+ 2QI M (z) r 4 cos 40 -I- 2(2n 2 - n - 1 ) r 3 sin 30 

- 4 n ( n  - -  1)(n + 2)(r 2 sin 2 0 Q R E  + r 2 COS 20QIM) 

(7b) 

In Eqs. (7a) and (7b), e is defined as 

R 2 
c~ 2 = co* - -  (7c) 

v 

and QRE and Q~M are the real and imaginary parts of the Bessel function 
ratio defined by Eq. (5) for the complex variable z. 

The Bessel function ratio is computed using a continued fraction 
algorithm with error improvement for the determination of spherical Bessel 
functions of complex arguments [16]. The algorithm uses a novel 
technique of evaluating continued fractions that eliminates large storage 
requirements. The algorithm was checked using the trigonometric expansions 
for spherical Bessel functions of complex argument [ 17], for n = 2 and 3, and 
found to be very accurate. The problem is then posed as a minimization 
problem of function of two variables, and a modified quasi-linearization 
algorithm is used to find iteratively the values of r and 0 that satisfy Eqs. (7) 
simultaneously. Once r and 0 are known, z and hence the complex decay 
factor fl can be obtained easily. 

3. RESULTS AND DISCUSSION 

3.1. Dynamics of Damped Oscillations 

Results for T and co are obtained for n.= 2, 3, 4, and 5 and are presented 
in Table I and Fig. 1. In Fig. 1, the solid lines represent the nondimensional 
damping rate (r/co*), and the dashed lines represent the nondimensional 
oscillation frequency (co/co*) in that mode. As can be seen, oscillations 

2 2 which increases with increasing n. This c%~ t begin only beyond an ~orit, 
corresponds to the C~m~ x 2  that Chandrasekhar [14] derives for aperiodic 

2 there are two real roots of Eq. (7a), and Eq. (7b) damping. For  c~ 2 < ~crit, 
goes identically to zero, i.e., two aperiodic modes of decay exist, one a 
rapidly decaying mode, and the other a slowly decaying one. Once ~2 > ~crit2 
or, in other words, the viscosity is less than the critical viscosity corre- 

2 the modes of decay are characterized by complex fl's. As sponding to ~r 
v ~ 0 ( e 2 ~  oe), the nondimensional oscillation frequency approaches 1, 
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Table I. The Damped Free Oscillations in a Viscous Droplet 

N2 "C CO @2 2" O) 

co* ~*  co.* o~.* 

n = 2  n = 3  

3.69020 a 0.9628& 0.00000 8.82117 ~ 0.92544 a 0.00000 
3.80000 0.93980 0.22987 9.00000 0.90640 0.18065 
4.00000 0.89330 0.37175 9.20000 0.88740 0.25869 
4.20000 0.85125 0.46009 9.40000 0.86923 0.31474 
4.60000 0.77818 0.57534 10.00000 0.81915 0.42930 
5.00000 0.71687 0.65036 10.60000 0.77484 0.50561 
5.40000 0.66471 0.70381 11.80000 0.70000 0.60626 
6.00000 0.59961 0.76036 12.60000 0.65821 0.65224 
7.00000 0.51614 0.81990 13.80000 0.60482 0.70328 
8.00000 0.45375 0.85661 15.40000 0.54693 0.75087 
9.00000 0.40541 0.88117 18.00000 0.47543 0.80088 

10.00000 0.36687 0.89859 22.60000 0.39029 0.85088 
11.00000 0.33544 0.91151 33.00000 0.28622 0.90331 
12.00000 0.30932 0.92144 37.00000 0.26140 0.91515 
13.40000 0.27939 0.93202 40.00000 0.24580 0.92253 
14.80000 0.25518 0.94002 46.00000 0.22006 0.93451 
17.40000 0.22059 0.95075 50.00000 0.20591 0.94096 
21.20000 0.18516 0.96111 57.00000 0.18526 0.95010 
27.00000 0.14976 0.97106 68.00000 0.16019 0.96058 
36.00000 0.11624 0.98008 84.00000 0.13395 0.97058 
42.00000 0.10131 0.98386 100.00000 0.11514 0.97703 
59,00000 0.07440 0.99005 120.00000 0.09800 0.98235 
65.00000 0.06805 0.99136 140.00000 0.08533 0.98590 
75.00000 0.05958 0.99300 180.00000 0.06785 0.99027 
79.80000 0.05623 0.99362 190.00000 0.06455 0.99102 

n = 4  n = 5  

15.44109 a 0.88933 a 0.00000 23.56980 a 0.86322 a 0.00000 
16.00000 0.86057 0.22740 24.00000 0.84956 0.15737 
16.80000 0.82225 0.34219 24.50000 0.83369 0.22796 
17.60000 0.78752 0.41705 25.50000 0.80388 0.31900 
18.40000 0.75590 0.47296 27.50000 0.75105 0.43127 
19.20000 0.72701 0.51724 30.50000 0.68536 0.53265 
20.00000 0.70052 0.55354 33.50000 0.63204 0.59803 
20.80000 0.67615 0.58398 36.00000 0.59477 0.63767 
21.60000 0.65365 0.60997 39.00000 0.55675 0.67421 
24.00000 0.59554 0.66947 45.00000 0.49682 0.72574 
26.40000 0.54845 0.71125 53.00000 0.43914 0.77057 
31.20000 0.47697 0.76648 66.00000 0.37593 0.81724 

a Aperiodic damping occurs for coefficients of kinematic viscosity greater than that which 
corresponds to this entry (i.e., this entry corresponds to azcr~t and %ri0' 
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Table I. (Continued) 
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~2 ~ ~ @2 ~ 

36.80000 0.41808 0.80673 74.00000 0.34770 
49.60000 0.33399 0.86001 91.00000 0.30216 
67.20000 0.26779 0.90073 115.00000 0.25641 
73.60000 0.25040 0.91108 125.00000 0.24129 
81.60000 0.23175 0.92184 135.00000 0.22785 
90.40000 0.21428 0.93151 147.50000 0.21301 

100.00000 0.19802 0.94007 167.50000 0.19290 
115.00000 0.17705 0:95041 187.50000 0.17625 
134.50000 0.15565 0.96010 215.00000 0.15754 
161,50000 0.13336 0.96920 240.00000 0,14369 
193.00000 0.11430 0.97616 272.50000 0.12897 
199.00000 0.11128 0.97720 297.50000 0.11956 

0.83794 
0.87111 
0.90279 
0.91257 
0.92089 
0.92965 
0.94077 
0.94930 
0.95815 
0.96420 
0.97015 
0.97371 

-re 
aJ~ ~ 

10 

5 "~/~n* 

. . . . . . . . . . . . . . . . .  OYO~n* 

/ 2  3 
1 ~ _  ~ - . ~ - = ~ -  - 

0.5 X 

1 5 1 0  50 100 500 

~2 

Fig. 1. Damped free oscillations in a viscous droplet: The dependence of 
damping rate and frequency of oscillations on properties. The ordinate measures 
the nondimensional damping rate and frequency of oscillations, with respect to 
the inviscid frequency in that mode. The abscissa measures cal. 
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i.e., the frequency co approaches the inviscid frequency, co*. At the same 
time, the damping rate reduces and asymptotically approaches ( n -  1) 
(2n + 1) co*/e 2. These limiting results have already been obtained [14], and 
our numerical results agree with them, as can be deduced from the limiting 
values of Table I. 

From Fig. 1, it is apparent that for each value of z below a critical 
damping rate %rit, there are two values of cd, one below and the other 
above %~t.2 As we move from the aperiodic damping regime to the damped 
oscillations regime, at first there are two modes of aperiodic decay, and 
past c~c~it2, damped oscillations occur with slow decay, characterized by 
27 < 27crit- This value of 27crit is the highest rate of damping possible for 
damped oscillations and, like acr~t, is constant for given mode. 

3.2. Determination of Surface Tension and Viscosity 

Figure 1 and Table I, in the form presented, afford valuable insight 
into the dynamics of damped free oscillations of a droplet. However, they 
cannot directly be used to determine the viscosity and surface tension of 
the droplet from 27 and co. In this section, we attempt to develop a means 
of achieving this. 

In a typical experiment, a droplet suspended in a vacuum or a gas of 
negligible density is set into damped oscillations. In order for this to 
happen, the viscosity of the liquid must be small enough (or the radius so 
chosen) that cd> c~rit. For example, for water, this reduces to the require- 
ment that R>0.23 mm, which is easily achieved. In actual levitation 
experiments involving liquid metals, the low viscosity and the typical 
radius of about 5 mm ensure that damped oscillations occur. High-speed 
pictures are then taken of the oscillating droplet. These pictures are 
analyzed using Fourier transform techniques to establish the frequency of 
oscillations and the damping rate. The mode n is deduced from visual 
inspection of the shape oscillations of the droplet. In addition, the density 
p and the equilibrium radius R also need to be measured (for example, R 
can be measured from the pictures, and p from the mass of the levitated 
material). 

Thus, at the end of the experiment, 27, co, and the relevant parameters 
of the problem are known. It is left to find the surface tension and viscosity 
from this information and the solution in Section 2. 

From the definition of z and/3, 

v 
f l  = - ~  ( x + i y ) 2 = z + i co 
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where x and y are real. Thus, we have 

X -= [R2/2V ('c if" ~ "4- (2)2)] 1/2 (Sa)  

and 
y =  [RZ/Zv ( .~ + ~ ] 1 / 2  (8b) 

where, clearly, only the positive root is acceptable for x and y to be real. 
Or, in the polar formulation used to obtain Eqs. (7), 

r = [R2/v x / - ~ +  (o2)] 1/2 (9a) 

and 

O - ~ ' ( ~ - ~ C O 2 ) - -  g~ 1/2 (9b) 
tan \ , f ( r 2  + co2) + ~/ 

Thus, once r and co are known, 0 is completely determined, and r = r(v) in 
Eqs. (7). Thus, Eqs. (7) can be solved again, this time for an unknown r 
and c~. Once r and :~ are known, v and ), can be found. A program that 
takes r and co as inputs along with R, n, and p or mass and computes the 
surface tension and viscosity has been developed. If the program is to be 
used to compute only surface tension values from inviscid oscillations, an 
artificially low value of r (e.g., r =0.01) can be given to the program. The 
program is very sensitive to initial guesses of r and ~2, but this is a 
characteristic of the modified quasilinearization algorithm. A good guess 
would be the one derived from the known properties at room temperature. 

Results are presented in a nondimensional form for n = 2, 3, 4, and 5. 
Table II presents some numerical values of the surface tension to viscosity 
parameter Nsv, 

~)R 0{ 4 

Nsv = ~-2 - n(n - 1)(n + 2) (10a) 

and the nondimensional viscosity number J(, 

R 2 
JT= r - - ,  (10b) 

1; 

for different values of the nondimensional oscillation parameter (or the 
nondimensional frequency), aS, 

CO 
= ~ ~.2 (10e)  

Nsv, -g, and o5 are the three nondimensional parameters that define the 
problem completely. 

840/'12/1-10 
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F r o m  Table  II, it is apparen t  that  the region 0.9 ~< o3 ~< 1.0 is of greater  
interest. In  order  to give as much  detail as possible in this region, the 
results are plot ted with 1 -  (5 as the abscissa in Figs. 2-4. Figures 2 and 3 
show two regions, 0.9 ~< ca ~< 1.0 and (3 < 0.9. I t  can be observed f rom these 
figures tha t  as o3 ~ O, N ~  reaches a m in imum which cor responds  to the ~ t  
for that  n. Below this N~v, damping  is aperiodic,  as discussed earlier. Also, as 

O3~1 ,  co ~ co* (11) 

Or,  in terms of N~v, (5, and J?, co can be expressed as 

(.02 O32 j~2 
(12) 

co .2 1--o32 N ~ n ( n - 1 ) ( n  + 2) 

and Eq. (11) implies that  the r ight-hand side of Eq. (12) approaches  one 
as O3~1.0.  Fo r  example,  for O3=0.999938, and n = 2 ,  f rom Eq. (12), 
(co/co*)=0.99726, and for o3=0.980581, (09/~0")=0.959, i.e., the inviscid 
approx ima t ion  gives an error  of less than 5 % for O3 > 0.98. 
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Fig. 2. Dependence of surface tension to viscosity parameter Nsv on the 
damping rate and frequency oscillations: Detail of behavior for o3 > 0.9. o3 is 
the nondimensional frequency, ~3 = ~o2/~T+ z 2 
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Fig. 3. Dependence of surface tension to viscosity parameter N~ on the damping 
rate and frequency of oscillations for 03 ~< 0.9. 

Sometimes, damping rate information is difficult to obtain from the 
experiment (owing to time constraints on the experiment) or not available 
at all (for example, in the surface tension measurements from oscillation 
frequency measurements [6]).  In such cases, if viscous effects are 
considerable, an error may result in the property evaluation. However, for 
mode 2 oscillations, if the viscosity is known, a simple correction can be 
made to account for the viscous effects when o3 <0.98, where inviscid 
approximation may be inaccurate. This is done as follows. 

From Fig. 4, we observe that for n = 2, J? is virtually constant with o3 
(for o5 < 0.98, an average Jf may be used: Xav = 3.62693, with a maximum 
error of 0.27). Thus, if the viscosity of the droplet is known a priori, the 
constant value of 3~ is used to find z, and this T may be used in the deter- 
mination of &. If e3 thus calculated is greater than 0.98, the inviscid 
approximation may be used with less than 5 % error. If, however, it is less 
than 0.98, this value of e5 may be used along with Figs. 2 and 3 or Table II  
to find Nsv. from which the surface tension ~ can be calculated within the 
upper and lower bounds of the error in JT. This rather fortunate state of 
affairs prevails only in the case of mode 2 oscillations, and that, too, if v 
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Dependence of nondimensional viscosity number J(= "cR2/v on the 

damping rate and frequency of oscillations. 

is already known. Thus, experimental requirements are somewhat eased, 
and the results of this work may be applied in cases where viscosity 
corrections are to be investigated, for example, in the measurement of 
surface tension using electromagnetic levitation [6].  

In summary, the procedure to find surface tension and viscosity from 
a single experiment may be described as follows: 

(1) From experimental observation of an oscillating levitated 
droplet, the damping rate 3, the frequency of oscillation co, the 
radius R, and the density p of the droplet are measured. The 
mode of oscillations n is also noted. 

(2) From Table II or Fig. 4, the kinematic viscosity v is determined 
from the nondimensional viscosity number Jr, v = "cR2/X. 

(3) Once the viscosity is known, Table II or Figs. 2 and 3 are 
consulted to obtain the surface tension to viscosity parameter 
Nsv, and from the known viscosity, the surface tension 7 is 
calculated as 7 = Ns,~vZP/R. For mode 2 oscillations, if damping 
rate is unavailable, a viscosity correction may also be applied as 
discussed earlier. 
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4. CONCLUSIONS 

A numerical investigation of the damped oscillations of a viscous 
droplet in vacuum or a gas of negligible density has been performed. A 
continued fraction approach to the evaluation of the spherical Bessel 
function ratios, and a modified quasi-linearization approach to the search 
for zeros of the characteristic equation have been used. The problem is 
completely defined by three nondimensional parameters, 05, N~v, and )(. 
Using these results, the surface tension and viscosity of liquids can be 
computed from a knowledge of the damping rate and frequency of oscilla- 
tions. 

It must, however, be remembered that the method outlined in this 
work applies only to free oscillations. It is also applicable to liquid droplets 
levitated acoustically or eleetromagnetically, in reduced-gravity environ- 
ments where the influence of the external forces and internal flows is minimal. 
One way to simulate this on earth is by setting a levitated droplet into 
oscillations and dropping the experiment in a long drop tube. But the effect 
of levitation forces and internal flows must be accounted for in real applica- 
tions, before reliable surface tension and viscosity data can be obtained. 
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